

An Option-Based Analysis of Air Transportation Infrastructure Investments

Bruno Miller

John-Paul Clarke

Massachusetts Institute of Technology

Joint Universities Program Meeting

October 23rd - 24th, 2003

Motivation

- Air transportation is a key strategic asset for economic growth
- Given finite resources and needs in other sectors (health, education, environment, etc), decision-makers need answers to two basic questions:
 - 1. How much infrastructure is needed?
 - 2. When is this infrastructure needed?
- The answer is difficult because of uncertainty in:
 - → Markets
 - → Technology
 - → Politics

Example: Size of new airport

- •Demand today requires 1 runway
- •Demand tomorrow may require 2 runways

Strategy: Conservative

Today: Build 1st runway

Tomorrow: Build 2nd runway

Example: Size of new airport

- •Demand today requires 1 runway
- •Demand tomorrow may require 2 runways

Strategy: Conservative Optimistic

Today: Build 1st runway Build 2 runways

Tomorrow: Build 2nd runway

Example: Size of new airport

- •Demand today requires 1 runway
- •Demand tomorrow may require 2 runways

Strategy:	Conservative	Flexible	Optimistic
Today:	Build 1st runway	Build 1 st runway, purchase land	Build 2 runways
Tomorrow:	Build 2 nd runway	Build 2 nd runway?	

Objective

- Develop a two-part methodology to support investment decisions in air transportation infrastructure:
 - Evaluate the strategic value of infrastructure with financial and real options theory and Monte Carlo simulation in a system dynamics framework
 - 2. Determine the value of individual projects relative to other investments based on financial portfolio theory

Determining the strategic value

- Infrastructure provide the option (i.e. the possibility but not the obligation) to:
 - Respond quickly to changes in the market
 - Explore new markets
 - Influence markets

Strategic value

Determining the strategic value

- Infrastructure provide the option (i.e. the possibility but not the obligation) to:
 - Respond quickly to changes in the market
 - Explore new markets
 - Influence markets

Strategic value

- A real option is:
 - the right, but not the obligation,
 - to take an action on a real project (expand, switch, abandon, etc)
 - now or in the future . . .
 - at a price.
- In the face of uncertainty, real options allow decision-makers to profit from upside potential while limiting downside losses
- Real options are based on financial options theory

Payoff of a European call option

Payoff of a European call option

Value of option = E [Payoff | option exercised] – X * P(option exercised)Value of option = E [S | S > X] – X * P(S > X)

Valuation of Real Options

Assume strike price not fixed a priori

$$Value_{RO} = e^{-rT} \left(\int_{s=x}^{\infty} s \cdot f_s(s) ds - x \cdot \int_{s=x}^{\infty} f_s(s) ds \right)$$

$$= \left[S \mid S > X \right] \quad X * P(S > X)$$

Valuation of Real Options

 Assume strike price not fixed a priori

$$Value_{RO} = e^{-rT} \left(\int_{s=x}^{\infty} s \cdot f_s(s) ds - x \cdot \int_{s=x}^{\infty} f_s(s) ds \right)$$

$$E[S|S>X] \quad X * P(S>X)$$

$$E[Value_{RO}] = \int_{x=-\infty}^{x=\infty} C_{ROA}(x) \cdot f_X(x) dx =$$

$$= e^{-rT} \left(\int_{x=0}^{\infty} f_X(x) \int_{s=x}^{\infty} s \cdot f_S(s) ds dx - \int_{x=0}^{\infty} x \cdot f_X(x) \cdot \int_{s=x}^{\infty} f_S(s) ds dx \right)$$

System Dynamics model

Discount rate

Discount rate = Risk-free rate + Risk premium

Conclusion

- Investments decisions should include the strategic value of infrastructure for a better representation of project value
- The options-based methodology presented here:
 - captures the strategic value of infrastructure
 - takes into account multiple sources of uncertainty
 - finds the appropriate discount rate for the risk of the project

Thank you.

Thank you.

System Dynamics model

